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ABSTRACT 
Mining businesses work by looking at long term 
opportunities to make an economic gain from a 
resource. An investment decision in a mine is based 
upon a time frame of generally 10 or more years.  
Economic modelling, forecasting, research and 
business planning goes on to support that 
investment decision, and a huge amount of money is 
spent to realise a new mine.   

Strategic schedules often do not incorporate the 
capital investments as part of the optimisation 
models. From a strategic point of view, an important 
aspect is to analyse different mill capacities, different 
truck configurations or even different infrastructure, 
particularly from a multi-deposit point of view. 

The ability to simultaneously optimise strategic 
capital decisions as well as multiple mining policies 
(cutoff grade, mill capacities, trucks, stockpiles, etc.) 
across multiple mine sites greatly reduces the 
iterative process involved in globally optimising a 
business. 

This paper presents a global optimisation approach 
utilising a customised memetic algorithm. A memetic 
algorithm can be thought of as a synergy of 
evolutionary and classical optimisation techniques. 
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INTRODUCTION 
Mining businesses work by looking at long term opportunities to make an economic gain from a resource.  
An investment decision in a mine is based upon a time frame of generally 10 or more years. Economic 
modelling, forecasting, research and business planning goes on to support that investment decision, and 
a huge amount of money is spent to realise a new mine. The objectives at that stage are to achieve the 
planned business outcomes and meet the expectations of investors or bankers and JV partners.  

Of course, it is not all that simple and probably very soon after mining starts, new information is learned, 
assumptions are adjusted, surprises happen and expectations are adjusted (up or down). A mining 
operation is an extremely complex environment and the impact of a very large number of variables 
combines to cause those investment assumptions to look less and less accurate over time as mining 
proceeds. 

Typical strategic schedule models usually do not include important capital expenditure features such as 
capacity decay or expiration, precedence over time (rail before plant) or mutually exclusive option sets 
(choices of plant size). By not including these features, a strategic mine scheduling model for a capital-
sensitive operation is unable to be optimised to deliver maximum value. (L Blackwell, 2014). 

The ability to simultaneously optimise strategic capital decisions as well as multiple mining policies (cut-off 
grade, mill capacities, trucks, stockpiles, etc.) across multiple mine sites greatly reduces the iterative 
process involved in optimising a business and unlocks value. 

Evolutionary algorithm (EA) is an umbrella term used to describe population-based stochastic direct search 
algorithms that in some sense mimic natural evolution. (Bartz-Beielstein et al, 2014). 

In general, any abstract task to be accomplished can be thought of as solving a problem, which, in turn, 
can be perceived as a search through space of potential solutions. Since usually we are after “the best" 
solution, we can view this task as an optimisation process. For small spaces, classical exhaustive methods 
usually suffice; for larger spaces special artificial intelligence techniques must be employed. (Zbigniew 
Michalewicz). 

METHODOLOGY 
The problem under discussion is the simultaneous optimisation of extraction sequence and cut-off grade 
for single/multiple elements in the face of multiple processing streams and multiple mines under some 
capital decisions which can make the project go ahead or abort. 
  
The implementation requires single/multiple block model(s) with the following assumptions: 
  

• Development of an ultimate pit limit or pushback or some portion inside the ultimate pit limit that 
can be mined, processed and refined in several years. 

• Capacities constraints (i.e. mining, processing, refining capacities and others). 
• Economic models (i.e. operating costs and metal price). 
• Proper stage design is optional but preferred. The impact of proper stage designs on cut-off grade 

optimisation cannot be stressed enough. 
• The ore reserves inside the pit limit or pushback in terms of mineral grade and tonnage 

distribution. A grade tonnage distribution is calculated for each phase-bench-lithologies 
combination. 

  
The objective function of cut-off grade optimisation modelling is maximisation of NPV in the presence of 
capacity constraints (mine, mill, market and stockpiles), operational constraints (sinking rate, bench 
turnover, accumulation constraints, blending etc.), multiple processing streams and extraction sequences. 
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It can be represented mathematically as follows: 
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Equation 1 

Where: 
d= Discount rate (%) 
Pn = Total Profit per processes ($) 
Io = Capital Decisions - Investments ($) 
𝐶𝐶𝑐𝑐𝑚𝑚 = Closure cost per pit ($) 
N = number of periods. 
 

𝐼𝐼𝑜𝑜 = 𝑇𝑇𝑇𝑇 + 𝑁𝑁𝑁𝑁𝑇𝑇 + 𝐼𝐼𝐼𝐼 + 𝐷𝐷𝐷𝐷  
Equation 2 

Where: 
Ti = Truck Investment 
PPi = Processing Plant Investment 
In = Infrastructure Investment 
Dc = Dynamic Capital. 

 
𝑁𝑁𝐼𝐼 = (𝑁𝑁𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 1  + 𝑁𝑁𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 2 + ⋯+ 𝑁𝑁𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛) − 𝑓𝑓𝑇𝑇 

Equation 3 
Where: 
𝑁𝑁𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛 = Profit at process n 
f = fixed cost per year ($/year) 
T = length of period considered, usually a year. 
  

𝑁𝑁𝑝𝑝𝑝𝑝𝑜𝑜𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 = (𝑁𝑁𝑃𝑃 − 𝑆𝑆𝐷𝐷) ∗ �̅�𝑔𝑛𝑛 ∗ 𝑦𝑦𝑛𝑛 ∗ 𝑄𝑄𝑐𝑐𝑛𝑛 − 𝑚𝑚 ∗ 𝑄𝑄𝑚𝑚𝑛𝑛 − 𝐷𝐷 ∗ 𝑄𝑄𝑐𝑐𝑛𝑛 − 𝑃𝑃 ∗ 𝑄𝑄𝑝𝑝𝑛𝑛 − 𝑃𝑃𝐷𝐷 ∗  𝑄𝑄𝑚𝑚𝑛𝑛 
Equation 4 

Where: 
Pr: Price ($/unit of product) 
Sc = Selling cost ($/unit of product) 
�̅�𝑔𝑛𝑛 = average grade of material presented at process n 
𝑦𝑦𝑛𝑛 = recovery at process n 
m = Mining Cost ($/ton) 
𝑃𝑃𝐷𝐷  = Rehabilitation cost ($/ton) 
c = Processing cost ($/ore ton) 
r = rehandling cost ($/ore ton) 
f = fixed cost per year ($/year) 
T = length of period considered, usually a year 
𝑄𝑄𝑐𝑐𝑛𝑛= Quantity of ore presented at process n 
𝑄𝑄𝑚𝑚𝑛𝑛= Quantity of material mined 
𝑄𝑄𝑝𝑝𝑛𝑛= Quantity of ore reclaimed presented at process n. 
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Algorithm 
The algorithm consists of three evolutionary and one classical optimisation algorithm (Figure 1). These 
include: 

• The core or master evolutionary algorithm 
• Local search evolutionary algorithm 
• Capital Decision Search (combination of integer programming and evolutionary algorithm) 

  
The main responsibilities for each algorithm include: 

• Master 
o   Exploring cut-off grade search space 
o   Exploring stockpile cut-off grade search space 
o   Exploring extraction sequence search space 
o   Responsible for optimal reclaim strategy from stockpiles 

  
• Local Search 

o   Exploring the immediate neighbourhood of process and stockpile cut-off space for a given 
extraction sequence, in other words during the local search the extraction sequence is fixed 

  
• Capital Decisions Search 

o   Responsible for optimising different capital policies 
§  Integer Programming 

·    Optimise the composition of the truck fleet required across the life of mine 
§  Evolutionary algorithm 

·    Highly customise genetic algorithm responsible for optimising processing capacity 
·    Highly customise genetic algorithm responsible for optimising infrastructure 

 

 
Figure 1: Algorithm 

 
This new framework provides the ability to analyse multiple capital policies during the optimisation thereby 
reducing the iterative nature of the process. 
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Evolutionary algorithms are understood as population based stochastic direct search algorithms that in 
some sense mimic natural evolution. Points in the search space are considered as individuals (solution 
candidates), which form a population. Their fitness value is a number, indicating their quality w.r.t. the 
problem at hand. Besides initialisation and termination as necessary constituents of every algorithm, EAs 
can consist of three important factors: a set of search operators (usually implemented as ‘recombination’ 
and ‘mutation’), an imposed control flow, and a representation that maps adequate variables to 
implementable solution candidates (the so-called ‘genotype-phenotype mapping’). (Bartz-Beielstein et al, 
2014). 
  
The importance of this model is that the capital decisions are evaluated as part of the net present value 
during the optimisation. This will allow the decisions to be evaluated at the right time in order to maximise 
the net present value. 

RESULTS AND DISCUSSION 
This algorithm was proved in a typical open pit project. The dataset contains 3 pushbacks and it has a 
mine life of 16 years. The above approach should give a good indication of the timing of various 
investments in order to maximise the project NPV. 
  
We will evaluate three different scenarios, trucks, processing capacity and infrastructure. 

First Scenario: Analysing Truck Policy 
Here we will evaluate the optimal composition and timing of the truck fleet.  We are considering two different 
truck types. The main parameters considered are shown in the table below: 
  

Truck Type Purchase Cost ($) Life (years) Capacity (tonnes) 

Truck A $5,500,000 5 300 

Truck B $3,500,000 4 90 
Table 1: Truck Policy - Parameters 

 
From Figure 2 below, it can be seen that six new trucks of Type A are purchased in year 1.  One truck of 
Type B is purchased in year 5. Furthermore, at the end of year 5, all the trucks of Type A are retired. 
Therefore, in year 6, five new trucks of Type A are purchased. In year 10, two new trucks of Type B are 
purchased and three new trucks of Type A during year 11. In year 14 all trucks of Type B are retired.  
Finally, a single truck of Type A is purchased in year 16.  
  

 
Figure 2: Purchase Truck Policy 
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Second Scenario: Analysing Optimum Processing Capacity 
In this example we will optimise the policy for processing capacity. Here, three different processing 
capacities will be evaluated.  
  
It is important to note that the scale of economics is considered here.  Larger capacities are usually 
associated with lower unit costs. This needs to be part of the optimisation in order to provide the optimum 
processing capacity. 
  
Processing Type Incremental Purchase 

Cost ($) 
Processing Cost 
Escalation ($/ton) 

Processing Capacity 
(t/y) 

Processing A 20,000,000 1.5 2,000,000 

Processing B 10,000,000 1.0 3,000,000 

Processing C 15,000,000 0.5 4,500,000 
Table 2: Process Capacity Policy - Parameters 

 
In this case the results are shown in the image below: 
  

  
Figure 3: Process Capacity Plant (tons/year). 

  
Here, the optimal policy started with a plant capacity of 2,000,000 tons per year and after year 2 increases 
by one million tons to 3,000,000 tons. 

Third Scenario: Evaluate the best infrastructure 
Here we will evaluate the order in which infrastructure are being brought online.  For this example, we 
have three different sites (i.e. A, B and C) with two port capacities (i.e. Port A and Port B) and the 
investment associated with each option can be shown in the following image: 
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Figure 4: Infrastructure Setup 

 
The results from an infrastructure point of view are as follows: 

• Pit B to Port B online in period 1. 
• Pit C to Port B online in period 1. 
• Pit A to Pit B online in period 18. 

  
Since the timing of installing infrastructure is considering during the scheduling the result is a more robust 
and global optimised net present value (i.e. NPV). 
  

CONCLUSION 
The memetic algorithm allows for the efficient global optimisation of multiple policies such as: 

• Extraction sequence 
• Multiple cut-off grade policies 
• Stockpile policies 
• Various capital decision policies such as equipment, plant capacity and infrastructure 

  
The use of evolutionary algorithms provides a flexible and powerful framework to solve complex, non-linear 
problems in an efficient way without making any assumptions of the fitness landscape. They have many 
advantages, particularly around their ease of implementation, easily incorporating surrogate models and 
other optimisation techniques. 
  
Finally, as always, the result from any technique is only as good as the model on which it is operating. 
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